Lịch sử Triết học toán học

Nguồn gốc của toán học là đối tượng để tranh luận. Cho dù sự ra đời của toán học là ngẫu nhiên xảy ra hay gây ra bởi sự cần thiết phải phụ thuộc vào các môn học khác, ví dụ như vật lý, vẫn là một vấn đề tranh luận sôi nổi.[1][2]

Nhiều nhà tư tưởng đã đóng góp ý tưởng của họ liên quan đến bản chất của toán học. Hôm nay, một số [ai nói?] nhà triết học toán học nhằm đưa ra các tài khoản của hình thức điều tra này và các sản phẩm của nó khi họ đứng, trong khi những người khác nhấn mạnh vai trò của chính họ vượt xa sự giải thích đơn giản để phân tích phê phán. Có những truyền thống về triết học toán học trong cả triết học phương Tây và triết học phương Đông. Các triết học phương Tây về toán học đã lùi xa như Pythagoras, người đã mô tả lý thuyết "mọi thứ đều là toán học" (toán học), Plato, người đã diễn giải Pythagoras, và nghiên cứu trạng thái bản thể của các đối tượng toán học và Aristotle, người đã nghiên cứu logic và các vấn đề liên quan đến vô hạn (thực tế so với tiềm năng).

Triết học Hy Lạp về toán học bị ảnh hưởng mạnh mẽ bởi nghiên cứu của họ về hình học. Chẳng hạn, tại một thời điểm, người Hy Lạp cho rằng 1 (một) không phải là một con số, mà là một đơn vị có độ dài tùy ý. Một số được định nghĩa là vô số. Do đó, 3, ví dụ, đại diện cho vô số đơn vị nhất định, và do đó không "thực sự" là một con số. Tại một điểm khác, một lập luận tương tự đã được đưa ra rằng 2 không phải là một số mà là một khái niệm cơ bản của một cặp. Những quan điểm này xuất phát từ quan điểm hình học thẳng góc cạnh và hình học của người Hy Lạp: giống như các đường được vẽ trong một vấn đề hình học được đo theo tỷ lệ với đường được vẽ tùy ý đầu tiên, do đó, các số trên một dòng số được đo theo tỷ lệ đến "số" đầu tiên hoặc "một" tùy ý.

Những ý tưởng về các con số Hy Lạp trước đó đã được củng cố bằng việc phát hiện ra sự bất hợp lý của căn bậc hai của hai. Hippasus, một môn đệ của Pythagoras, đã chỉ ra rằng đường chéo của hình vuông đơn vị là không thể so sánh được với cạnh (đơn vị chiều dài) của nó: nói cách khác, ông đã chứng minh rằng không có con số (hợp lý) nào mô tả chính xác tỷ lệ của đường chéo vuông với cạnh của nó. Điều này gây ra một đánh giá lại đáng kể về triết học toán học Hy Lạp. Theo truyền thuyết, những đồng bào theo Pythagore đã bị tổn thương nặng nề bởi phát hiện này đến nỗi họ đã sát hại Hippasus để ngăn anh ta truyền bá ý tưởng lạc giáo của mình. Simon Stevin là một trong những người đầu tiên ở châu Âu thách thức các ý tưởng của Hy Lạp vào ngày 16   thế kỷ. Bắt đầu với Leibniz, trọng tâm chuyển mạnh mẽ sang mối quan hệ giữa toán học và logic. Viễn cảnh này thống trị triết học toán học qua thời FregeRussell, nhưng đã bị đặt câu hỏi bởi những phát triển vào cuối thế kỷ 19 và đầu thế kỷ 20.

Triết học đương đại

Một vấn đề lâu năm trong triết học toán học liên quan đến mối quan hệ giữa logic và toán học tại các nền tảng chung của họ. Trong khi các nhà triết học thế kỷ 20 tiếp tục đặt câu hỏi được đề cập ở đầu bài viết này, thì triết học toán học trong thế kỷ 20 được đặc trưng bởi sự quan tâm chủ yếu đến logic hình thức, lý thuyết tập hợp và các vấn đề cơ bản.

Đó là một câu đố sâu sắc rằng một mặt sự thật toán học dường như có một sự tất yếu hấp dẫn, nhưng mặt khác, nguồn gốc của "tính trung thực" của chúng vẫn còn khó nắm bắt. Điều tra về vấn đề này được gọi là nền tảng của chương trình toán học.

Vào đầu thế kỷ 20, các nhà triết học toán học đã bắt đầu phân chia thành nhiều trường phái tư tưởng khác nhau về tất cả những câu hỏi này, được phân biệt rộng rãi bằng hình ảnh của họ về nhận thức luậnbản thể học toán học. Ba trường phái, chủ nghĩa hình thức, trực giác và logic, xuất hiện vào thời điểm này, một phần để đáp lại sự lo lắng ngày càng lan rộng mà toán học đứng vững, và đặc biệt là phân tích, không tuân theo các tiêu chuẩn về sự chắc chắn và nghiêm ngặt đã được đưa ra được coi là đương nhiên. Mỗi trường giải quyết các vấn đề nổi bật tại thời điểm đó, hoặc cố gắng giải quyết chúng hoặc cho rằng toán học không được hưởng trạng thái như kiến thức đáng tin cậy nhất của chúng ta.

Những phát triển đáng ngạc nhiên và phản trực giác trong logic hình thức và đặt lý thuyết vào đầu ngày 20   thế kỷ dẫn đến những câu hỏi mới liên quan đến những gì được gọi là nền tảng của toán học. Khi thế kỷ mở ra, trọng tâm ban đầu của mối quan tâm đã mở rộng sang một khám phá mở về các tiên đề cơ bản của toán học, phương pháp tiên đề đã được áp dụng kể từ thời Euclid khoảng 300 TCN là cơ sở tự nhiên cho toán học. Các khái niệm tiên đề, mệnh đề và chứng minh, cũng như khái niệm mệnh đề là đúng với một đối tượng toán học, đã được chính thức hóa, cho phép chúng được xử lý bằng toán học. Các tiên đề của Zermelo-Fraenkel cho lý thuyết tập hợp đã được xây dựng trong đó cung cấp một khung khái niệm trong đó nhiều diễn ngôn toán học sẽ được diễn giải. Trong toán học, cũng như trong vật lý, những ý tưởng mới và bất ngờ đã nảy sinh và những thay đổi đáng kể đang đến. Với cách đánh số của Godel, các mệnh đề có thể được hiểu là đề cập đến chính chúng hoặc các mệnh đề khác, cho phép tìm hiểu về tính nhất quán của các lý thuyết toán học. Phê bình phản xạ này, trong đó lý thuyết đang xem xét "trở thành bản thân đối tượng của một nghiên cứu toán học" dẫn đến việc Hilbert gọi nghiên cứu như vậy là metamathematics hoặc lý thuyết chứng minh.[3]

Vào giữa thế kỷ, một lý thuyết toán học mới được tạo ra bởi Samuel EilenbergSaunders Mac Lane, được gọi là lý thuyết phạm trù, và nó trở thành một ứng cử viên mới cho ngôn ngữ tự nhiên của tư duy toán học.[4] Như ngày 20   Tuy nhiên, thế kỷ đã tiến triển, các ý kiến triết học chuyển hướng sang việc các câu hỏi về nền tảng được nêu ra từ đầu thế kỷ được đặt ra như thế nào. Hilary Putnam đã tóm tắt một quan điểm chung về tình hình vào thứ ba cuối cùng của thế kỷ bằng cách nói:

Khi triết lý phát hiện ra điều gì đó sai trái với khoa học, đôi khi khoa học có được changed- nghịch lý Russell nói đến cái tâm, cũng như Berkeley tấn công 's trên thực tế vô cùng -Nhưng thường xuyên hơn nó được triết lý đó phải được thay đổi. Tôi không nghĩ rằng những khó khăn mà triết học tìm thấy với toán học cổ điển ngày nay là những khó khăn thực sự; và tôi nghĩ rằng những diễn giải triết học về toán học mà chúng ta đang được cung cấp trên mỗi bàn tay là sai, và "giải thích triết học" chỉ là những gì toán học không cần. :169–170

Triết học toán học ngày nay tiến hành theo nhiều dòng nghiên cứu khác nhau, bởi các nhà triết học toán học, logic và toán học, và có nhiều trường phái tư tưởng về chủ đề này. Các trường được giải quyết riêng trong phần tiếp theo, và giả định của họ được giải thích.

Tài liệu tham khảo

WikiPedia: Triết học toán học http://web.maths.unsw.edu.au/~jim/structmath.html http://www.maths.unsw.edu.au/~jim/studianeoaristot... http://www.c2.com/cgi/wiki?TheEmperorsNewMind http://www.cspeirce.com/menu/library/bycsp/stoiche... http://us.macmillan.com/anaristotelianrealistphilo... http://www.rbjones.com/rbjpub/philos/maths/index.h... http://adsabs.harvard.edu/abs/2008FoPh...38..101T http://www.mit.edu/~yablo/apex.html#fn1 http://www.cs.nyu.edu/pipermail/fom/2000-February/... http://plato.stanford.edu/entries/platonism-mathem...